Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
PLOS global public health ; 2(12), 2022.
Article in English | EuropePMC | ID: covidwho-2275526

ABSTRACT

Fractional dosing of COVID-19 vaccines could accelerate vaccination rates in low-income countries. Dose-finding studies of the mRNA vaccine BNT162b2 (Pfizer-BioNTech) suggest that a fractional dose induces comparable antibody responses to the full dose in people <55 years. Here, we report the safety and immunogenicity of a fractional dose regimen of the BNT162b2 vaccine. REDU-VAC is a participant-blinded, randomised, phase 4, non-inferiority study. Adults 18–55 years old, either previously infected or infection naïve, were randomly assigned to receive 20μg/20μg (fractional dose) or 30μg/30μg (full dose) of BNT162b2. The primary endpoint was the geometric mean ratio (GMR) of SARS-CoV-2 anti-RBD IgG titres at 28 days post second dose between the reduced and full dose regimens. The reduced dose was considered non-inferior to the full dose if the lower limit of the two-sided 95% CI of the GMR was >0.67. Primary analysis was done on the per-protocol population, including infection naïve participants only. 145 participants were enrolled and randomized, were mostly female (69.5%), of European origin (95%), with a mean age of 40.4 years (SD 7.9). At 28 days post second dose, the geometric mean titre (GMT) of anti-RBD IgG of the reduced dose regimen (1,705 BAU/mL) was not non-inferior to the full dose regimen (2,387 BAU/mL), with a GMR of 0.714 (two-sided 95% CI 0.540–0.944). No serious adverse events occurred. While non-inferiority of the reduced dose regimen was not demonstrated, the anti-RBD IgG titre was only moderately lower than that of the full dose regimen and, importantly, still markedly higher than the reported antibody response to the licensed adenoviral vector vaccines. These data suggest that reduced doses of the BNT162b2 mRNA vaccine may offer additional benefit as compared to the vaccines currently in use in most low and middle-income countries, warranting larger immunogenicity and effectiveness trials. Trial Registration: The trial is registered at ClinicalTrials.gov (NCT04852861).

2.
Vaccine ; 41(17): 2829-2836, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2275527

ABSTRACT

BACKGROUND: Nursing home residents, a frail and old population group, respond poorly to primary mRNA COVID-19 vaccination. A third dose has been shown to boost protection against severe disease and death in this immunosenescent population, but limited data is available on the immune responses it induces. METHODS: In this observational cohort study, peak humoral and cellular immune responses were compared 28 days after the second and third doses of the BNT162b2 mRNA COVID-19 vaccine in residents and staff members of two Belgian nursing homes. Only individuals without evidence of previous SARS-CoV-2 infection at third dose administration were included in the study. In addition, an extended cohort of residents and staff members was tested for immune responses to a third vaccine dose and was monitored for vaccine breakthrough infections in the following six months. The trial is registered on ClinicalTrials.gov (NCT04527614). FINDINGS: All included residents (n = 85) and staff members (n = 88) were SARS-CoV-2 infection naïve at third dose administration. Historical blood samples from 28 days post second dose were available from 42 residents and 42 staff members. Magnitude and quality of humoral and cellular immune responses were strongly boosted in residents post third compared to post second dose. Increases were less pronounced in staff members than in residents. At 28 days post third dose, differences between residents and staff had become mostly insignificant. Humoral, but not cellular, responses induced by a third dose were predictive of subsequent incidence of vaccine breakthrough infection in the six months following vaccination. INTERPRETATION: These data show that a third dose of mRNA COVID-19 vaccine largely closes the gap in humoral and cellular immune response observed after primary vaccination between NH residents and staff members but suggest that further boosting might be needed to achieve optimal protection against variants of concern in this vulnerable population group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Adult , Population Groups , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Breakthrough Infections , Nursing Homes , RNA, Messenger , Immunity , Antibodies, Viral
3.
Am J Transplant ; 23(5): 649-658, 2023 05.
Article in English | MEDLINE | ID: covidwho-2231766

ABSTRACT

As solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Cohort Studies , Interferon-gamma , Kidney Transplantation/adverse effects , Prospective Studies , Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , Immunoglobulin G , Transplant Recipients , Vaccination
4.
Clin Cancer Res ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2229385

ABSTRACT

PURPOSE: Cancer patients display reduced humoral responses after double-dose COVID-19 vaccination while their cellular response is more comparable to that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and cancer patients. Due to the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in cancer patients. EXPERIMENTAL DESIGN: 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARSCoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T cell responses against SARS-CoV-2 specific S1 and S2 peptides. RESULTS: Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects (GMT 1755.90 BAU/mL [95% CI 1276.95-2414.48] vs 1495.82 BAU/mL (95% CI 1131.48-1977.46)). However, homologous boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS: In cancer patients who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.

5.
PLOS Glob Public Health ; 2(12): e0001308, 2022.
Article in English | MEDLINE | ID: covidwho-2196840

ABSTRACT

Fractional dosing of COVID-19 vaccines could accelerate vaccination rates in low-income countries. Dose-finding studies of the mRNA vaccine BNT162b2 (Pfizer-BioNTech) suggest that a fractional dose induces comparable antibody responses to the full dose in people <55 years. Here, we report the safety and immunogenicity of a fractional dose regimen of the BNT162b2 vaccine. REDU-VAC is a participant-blinded, randomised, phase 4, non-inferiority study. Adults 18-55 years old, either previously infected or infection naïve, were randomly assigned to receive 20µg/20µg (fractional dose) or 30µg/30µg (full dose) of BNT162b2. The primary endpoint was the geometric mean ratio (GMR) of SARS-CoV-2 anti-RBD IgG titres at 28 days post second dose between the reduced and full dose regimens. The reduced dose was considered non-inferior to the full dose if the lower limit of the two-sided 95% CI of the GMR was >0.67. Primary analysis was done on the per-protocol population, including infection naïve participants only. 145 participants were enrolled and randomized, were mostly female (69.5%), of European origin (95%), with a mean age of 40.4 years (SD 7.9). At 28 days post second dose, the geometric mean titre (GMT) of anti-RBD IgG of the reduced dose regimen (1,705 BAU/mL) was not non-inferior to the full dose regimen (2,387 BAU/mL), with a GMR of 0.714 (two-sided 95% CI 0.540-0.944). No serious adverse events occurred. While non-inferiority of the reduced dose regimen was not demonstrated, the anti-RBD IgG titre was only moderately lower than that of the full dose regimen and, importantly, still markedly higher than the reported antibody response to the licensed adenoviral vector vaccines. These data suggest that reduced doses of the BNT162b2 mRNA vaccine may offer additional benefit as compared to the vaccines currently in use in most low and middle-income countries, warranting larger immunogenicity and effectiveness trials. Trial Registration: The trial is registered at ClinicalTrials.gov (NCT04852861).

6.
Front Immunol ; 13: 1062136, 2022.
Article in English | MEDLINE | ID: covidwho-2198904

ABSTRACT

Background: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. Methods: We employed machine learning approaches to identify a biomarker signature based on blood cytokines, chemokines, and immune- and non-immune-related growth factors linked to vaccine immunogenicity in 199 cancer patients receiving the BNT162b2 vaccine. Results: C-reactive protein (general marker of inflammation), interleukin (IL)-15 (a pro-inflammatory cytokine), IL-18 (interferon-gamma inducing factor), and placental growth factor (an angiogenic cytokine) correctly classified patients with a diminished vaccine response assessed at day 49 with >80% accuracy. Amongst these, CRP showed the highest predictive value for poor response to vaccine administration. Importantly, this unique signature of vaccine response was present at different studied timepoints both before and after vaccination and was not majorly affected by different anti-cancer treatments. Conclusion: We propose a blood-based signature of cytokines and growth factors that can be employed in identifying cancer patients at persistent high risk of COVID-19 despite vaccination with BNT162b2. Our data also suggest that such a signature may reflect the inherent immunological constitution of some cancer patients who are refractive to immunotherapy.


Subject(s)
BNT162 Vaccine , COVID-19 , Cytokines , Neoplasms , Humans , BNT162 Vaccine/immunology , COVID-19/prevention & control , Cytokines/blood , Intercellular Signaling Peptides and Proteins
7.
Clin Infect Dis ; 75(1): e695-e704, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017792

ABSTRACT

BACKGROUND: Residents of nursing homes (NHs) are at high risk of coronavirus disease 2019 (COVID-19)-related disease and death and may respond poorly to vaccination because of old age and frequent comorbid conditions. METHODS: Seventy-eight residents and 106 staff members, naive to infection or previously infected with severe acute respiratory syndrome coronavirus (SARS-CoV-2), were recruited in NHs in Belgium before immunization with 2 doses of 30 µg BNT162b2 messenger RNA (mRNA) vaccine at days 0 and 21. Binding antibodies (Abs) to SARS-CoV-2 receptor-binding domain (RBD), spike domains S1 and S2, RBD Ab avidity, and neutralizing Abs against SARS-CoV-2 wild type and B.1.351 were assessed at days 0, 21, 28, and 49. RESULTS: SARS-CoV-2-naive residents had lower Ab responses to BNT162b2 mRNA vaccination than naive staff. These poor responses involved lower levels of immunoglobulin (Ig) G to all spike domains, lower avidity of RBD IgG, and lower levels of Abs neutralizing the vaccine strain. No naive residents had detectable neutralizing Abs to the B.1.351 variant. In contrast, SARS-CoV-2-infected residents had high responses to mRNA vaccination, with Ab levels comparable to those in infected staff. Cluster analysis revealed that poor vaccine responders included not only naive residents but also naive staff, emphasizing the heterogeneity of responses to mRNA vaccination in the general population. CONCLUSIONS: The poor Ab responses to mRNA vaccination observed in infection-naive NH residents and in some naive staff members suggest suboptimal protection against breakthrough infection, especially with variants of concern. These data support the administration of a third dose of mRNA vaccine to further improve protection of NH residents against COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunoglobulin G , Nursing Homes , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
8.
JCI Insight ; 7(9)2022 04 05.
Article in English | MEDLINE | ID: covidwho-1775052

ABSTRACT

Severe COVID-19 disease is associated with dysregulation of the myeloid compartment during acute infection. Survivors frequently experience long-lasting sequelae, but little is known about the eventual persistence of this immune alteration. Herein, we evaluated TLR-induced cytokine responses in a cohort of mild to critical patients during acute or convalescent phases (n = 97). In the acute phase, we observed impaired cytokine production by monocytes in the patients with the most severe COVID-19. This capacity was globally restored in convalescent patients. However, we observed increased responsiveness to TLR1/2 ligation in patients who recovered from severe disease, indicating that these cells display distinct functional properties at the different stages of the disease. In patients with acute severe COVID-19, we identified a specific transcriptomic and epigenomic state in monocytes that can account for their functional refractoriness. The molecular profile of monocytes from recovering patients was distinct and characterized by increased chromatin accessibility at activating protein 1 (AP1) and MAF loci. These results demonstrate that severe COVID-19 infection has a profound impact on the differentiation status and function of circulating monocytes, during both the acute and the convalescent phases, in a completely distinct manner. This could have important implications for our understanding of short- and long-term COVID-19-related morbidity.


Subject(s)
COVID-19 , Cytokines/metabolism , Disease Progression , Humans , Monocytes/metabolism , SARS-CoV-2
9.
Front Immunol ; 13: 827242, 2022.
Article in English | MEDLINE | ID: covidwho-1753369

ABSTRACT

It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunocompromised Host , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
10.
NPJ Vaccines ; 7(1): 35, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1735248

ABSTRACT

We report the levels of neutralising antibodies against Wuhan, Delta and Omicron variants in unimmunized infected (group 1), immunised and boosted (group 2) and infected immunised and boosted (group 3) adult individuals. Our observations support the rapid administration of a booster vaccine dose to prevent infection and disease caused by Omicron.

12.
Arch Public Health ; 79(1): 195, 2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1511759

ABSTRACT

BACKGROUND: The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented itself as one of the most important health concerns of the 2020's, and hit the geriatric population the hardest. The presence of co-morbidities and immune ageing in the elderly lead to an increased susceptibility to COVID-19, as is the case for other influenza-like illnesses (ILI) or acute respiratory tract infections (ARI). However, little is known, about the impact of a previous or current infection on the other in terms of susceptibility, immune response, and clinical course. The aim of the "Prior Infection with SARS-COV-2" (PICOV) study is to compare the time to occurrence of an ILI or ARI between participants with a confirmed past SARS-CoV-2 infection (previously infected) and those without a confirmed past infection (naïve) in residents and staff members of nursing homes. This paper describes the study design and population characteristics at baseline. METHODS: In 26 Belgian nursing homes, all eligible residents and staff members were invited to participate, resulting in 1,226 participants. They were classified as naïve or previously infected based on the presence of detectable SARS-CoV-2 antibodies and/or a positive RT-qPCR result before participation in the study. Symptoms from a prior SARS-CoV-2 infection between March and August 2020 were compared between previously infected residents and staff members. RESULTS: Infection naïve nursing home residents reported fewer symptoms than previously infected residents: on average 1.9 and 3.1 symptoms, respectively (p = 0.016). The same effect was observed for infection naïve staff members and previously infected staff members (3.1 and 6.1 symptoms, respectively; p <0.0001). Moreover, the antibody development after a SARS-CoV-2 infection differs between residents and staff members, as previously infected residents tend to have a higher rate of asymptomatic cases compared to previously infected staff members (20.5% compared to 12.4%; p <0.0001). CONCLUSIONS: We can postulate that COVID-19 disease development and symptomatology are different between a geriatric and younger population. Therefore, the occurrence and severity of a future ILI and/or ARI might vary from resident to staff.

13.
J Hematol Oncol ; 14(1): 174, 2021 10 24.
Article in English | MEDLINE | ID: covidwho-1473657

ABSTRACT

BACKGROUND: Factors affecting response to SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem cell transplantation (allo-HCT) recipients remain to be elucidated. METHODS: Forty allo-HCT recipients were included in a study of immunization with BNT162b2 mRNA vaccine at days 0 and 21. Binding antibodies (Ab) to SARS-CoV-2 receptor binding domain (RBD) were assessed at days 0, 21, 28, and 49 while neutralizing Ab against SARS-CoV-2 wild type (NT50) were assessed at days 0 and 49. Results observed in allo-HCT patients were compared to those obtained in 40 healthy adults naive of SARS-CoV-2 infection. Flow cytometry analysis of peripheral blood cells was performed before vaccination to identify potential predictors of Ab responses. RESULTS: Three patients had detectable anti-RBD Ab before vaccination. Among the 37 SARS-CoV-2 naive patients, 20 (54%) and 32 (86%) patients had detectable anti-RBD Ab 21 days and 49 days postvaccination. Comparing anti-RBD Ab levels in allo-HCT recipients and healthy adults, we observed significantly lower anti-RBD Ab levels in allo-HCT recipients at days 21, 28 and 49. Further, 49% of allo-HCT patients versus 88% of healthy adults had detectable NT50 Ab at day 49 while allo-HCT recipients had significantly lower NT50 Ab titers than healthy adults (P = 0.0004). Ongoing moderate/severe chronic GVHD (P < 0.01) as well as rituximab administration in the year prior to vaccination (P < 0.05) correlated with low anti-RBD and NT50 Ab titers at 49 days after the first vaccination in multivariate analyses. Compared to healthy adults, allo-HCT patients without chronic GVHD or rituximab therapy had comparable anti-RBD Ab levels and NT50 Ab titers at day 49. Flow cytometry analyses before vaccination indicated that Ab responses in allo-HCT patients were strongly correlated with the number of memory B cells and of naive CD4+ T cells (r > 0.5, P < 0.01) and more weakly with the number of follicular helper T cells (r = 0.4, P = 0.01). CONCLUSIONS: Chronic GVHD and rituximab administration in allo-HCT recipients are associated with reduced Ab responses to BNT162b2 vaccination. Immunological markers could help identify allo-HCT patients at risk of poor Ab response to mRNA vaccination. TRIAL REGISTRATION: The study was registered at clinicaltrialsregister.eu on 11 March 2021 (EudractCT # 2021-000673-83).


Subject(s)
Antibodies, Neutralizing/biosynthesis , COVID-19 Vaccines/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Adult , Aged , Antibodies, Neutralizing/immunology , BNT162 Vaccine , COVID-19 Vaccines/immunology , Humans , Middle Aged , Transplantation Conditioning , Transplantation Immunology , Transplantation, Homologous
15.
J Clin Virol ; 142: 104897, 2021 09.
Article in English | MEDLINE | ID: covidwho-1313211

ABSTRACT

OBJECTIVES: Assess the performance of five SARS-CoV-2 rapid serological tests (RST) using finger prick (FP) blood on-site to evaluate their usability for exposure assessment in population-based seroprevalence studies. STUDY DESIGN: Since cross-reactivity with common cold human coronaviruses occurs, serological testing includes a risk of false-positive results. Therefore, the selected cohort for RST-validation was based on combined immunoassay (presence of specific antibodies) and RT-qPCR (presence of SARS-CoV-2) data. RST-performance for FP blood and serum was assessed by performing each RST in two groups, namely SARSCoV- 2 positive (n=108) and negative healthcare workers (n=89). Differences in accuracy and positive and negative predictive values (PPV, NPV) were calculated for a range (1-50%) of SARS-CoV-2 prevalence estimates. RESULTS: The OrientGene showed overall acceptable performance, with sensitivities of 94.4% and 100%, and specificities of 96.6% and 94.4%, using FP blood and serum, respectively. Although three RST reach optimal specificities (100%), the OrientGene clearly outperforms in sensitivity. At a SARS-CoV-2 prevalence rate of 40%, this RST outperforms the other tests in NPV (96.3%) and reaches comparable PPV (94.9%). Although the specificity of the Covid-Presto is excellent when using FP blood or serum (100% and 97.8%, respectively), its sensitivity decreases when using FP blood (76.9%) compared to serum (98.1%). CONCLUSIONS: Performances of the evaluated RST differ largely. Only one out of five RST (OrientGene) had acceptable sensitivity and specificity using FP blood. Therefore, the latter could be used for seroprevalence studies in a high-prevalence situation. The OrientGene, which measures anti-RBD antibodies, can be valuable after vaccination as well.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Sensitivity and Specificity , Seroepidemiologic Studies , Serologic Tests
SELECTION OF CITATIONS
SEARCH DETAIL